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MEMO 2025 Individual I-1

I-1
Let R+ be the set of positive real numbers. Let f : R+ → R+ be a function such that for all
x, y ∈ R+ it holds that

yf 2025(x) ≥ xf(y) .

Show that there exists a positive integer n0 such that for all positive integers n ≥ n0 and for
all x ∈ R+ it holds that

fn(x) ≥ x.

Remark. Here fn denotes the function f applied n times, this means fn(x) = f(f(. . . f︸ ︷︷ ︸
n times

(x) . . . )).

Solution. By assumption, we know that xf(y) ≤ yf 2025(x) for all x, y ∈ R+. Plugging in
y = x, we can deduce that f(x) ≤ f 2025(x) for all x ∈ R+.

We claim that there is some y ∈ R+ with y ≤ f(y). To see this, recall that f(1) ≤ f 2025(1).
Therefore, there must be some i ∈ {1, 2, . . . , 2024} such that f i(1) ≤ f i+1(1). Taking y = f i(1)
shows that there indeed exists some y ∈ R+ with y ≤ f(y).

Now, taking y ∈ R+ with y ≤ f(y) and any x ∈ R+, note that we have

xf(y) ≤ yf 2025(x) ≤ f(y)f 2025(x),

implying x ≤ f 2025(x). Thus, we have x ≤ f 2025(x) for all x ∈ R+.

So, we have shown that for any x ∈ R+ we have x ≤ f 2025(x) and f(x) ≤ f 2025(x). In particular,
applying this to fm(x) and to fm−1(x) for any integer m ≥ 2, we obtain fm(x) ≤ fm+2025(x)
and fm(x) ≤ fm+2024(x). Applying this repeatedly, we can therefore conclude that fm(x) ≤
fm+a·2024+b·2025(x) for any x ∈ R+, any integer m ≥ 2, and any non-negative integers a and b.

Finally, we claim that for any n ≥ 20252 and any x ∈ R+ we have x ≤ fn(x). Note that
n − 2025 ≥ 2024 · 2025, and so (as 2024 and 2025 are coprime) we can write n − 2025 =
a · 2024 + b · 2025 for some non-negative integers a and b. Thus, we can conclude that

x ≤ f 2025(x) ≤ f 2025+a·2024+b·2025(x) = fn(x),

as desired.
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I-2
On an infinite square grid, on which some unit squares are coloured red, a ruby rook is a piece
which, in one move, can travel any number of squares in one direction parallel to one of the grid
lines (either vertically or horizontally), while remaining on red squares at all times throughout
the move.

Starting with an uncoloured infinite square grid, Alice performs the following procedure: First,
she colours at most 2025 of the unit squares red. Afterwards, she places some ruby rooks on
distinct red unit squares, such that the following two rules are satisfied:

• No ruby rook can reach another ruby rook in one move.

• Every ruby rook can reach every other ruby rook in two moves.

Find the maximum possible number of ruby rooks that Alice can place during this proce-
dure.

Answer. The maximum number of ruby rooks that Alice can place is 63.

Proof that 63 ruby rooks can be placed. Consider a staircase-shaped red area made up of
63 rows ranging from length 1 to 63 (see the figure below). It is possible to place 63 ruby rooks
along the main diagonal of the red shape since:

• No ruby rook can reach another ruby rook in one move since there is at most one ruby
rook in every row and in every column.

• Every ruby rook can reach every other ruby rook within two moves. Indeed, it can first
move horizontally to the left to a square in the same column as the other ruby rook, and
then move vertically upwards to the other ruby rook or first move vertically downwards
to a square in the same row as the other ruby rook and then horizontally to the right to
the second ruby rook.

The number of red squares is 63·(63+1)
2 = 2016 ≤ 2025, satisfying the condition in the problem

statement.

R
R

R
R

R... ...
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Proof that at most 63 ruby rooks can be placed. Assume that Alice places n ruby rooks,
and let us enumerate them from 1 to n. For any two ruby rooks 1 ≤ i < j ≤ n on the grid,
there must exist a red square that both ruby rook i and ruby rook j can reach in one move,
and let us call this red square Si,j (if such a square did not exist, then it would not be possible
for ruby rook i to get to ruby rook j in two moves). Note that if (i, j) ̸= (i′, j′), then Si,j and
Si′,j′ are distinct; otherwise, we would have three ruby rooks that can reach the same square,
which would imply that we have a pair of ruby rooks in the same row or column that can reach
each other in one move. Note that none of the n red squares with a ruby rook can coincide
with any square Si,j, and the squares Si,j are also all red. Since the number of squares Si,j is(

n
2
)
, we get Ç

n

2

å
+ n ≤ 2025.

This implies (n + 1
2)2 − 1

4 = n(n + 1) = n(n − 1) + 2n = 2 ·
(

n
2
)

+ 2n ≤ 4050 ≤ 4096 − 1
4 . Thus,

(n+ 1
2)2 ≤ 4096 = 642, and we can conclude that n+ 1

2 ≤ 64. Since the number n of ruby rooks
is an integer, this implies n ≤ 63.
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I-3
Let ABC be a triangle. Its incircle ω touches the sides BC, CA and AB at points D, E and
F , respectively. Let P and Q be points on the line BC distinct from D such that PB = BD

and QC = CD. Prove that the circumcircles of the triangles PCE and QBF and the circle ω

pass through a common point.

Solution 1.

A

B CD

E
F

I

P Q

We denote the interior angles in the triangle ABC by α := ∡BAC, β := ∡CBA and γ :=
∡ACB.

Let IA be the center of the excircle opposite to the vertex A. By the definition of P and because
BE and BD are tangent to the incircle of ABC we have BP = BD = BE. Therefore the
triangle BFP is isosceles with base PF and

∡PFB = ∡BPF = 180◦ − ∡FBP

2 = β

2 .

In the same way, it follows in triangle CEQ that CQ = CE and

∡CEQ = ∡EQC = 180◦ − ∡QCE

2 = γ

2 .

Claim 1. PFEQ are cyclic.
To this end we consider the chord FQ and show ∡QPF +∡FEQ = 180◦. We have shown that
∡QPF = β/2. On the other hand we obtain

∡FEQ = ∡FED + ∡DEC + ∡CEQ = ∡FDB + (90◦ − γ/2) + γ/2
= (90◦ − β/2) + 90◦ = 180◦ − β/2 ,

which proves the claim. ■

8
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Claim 2. IA is the circumcenter of PFEQ.
The triangles BFP and CQE are isosceles. Therefore, the perpendicular bisectors of of the
line segments PF and QE are the bisectors of the exterior angles at B and C, respectively. On
the one hand these two lines intersect in the circumcenter of PFEQ, on the other hand they
intersect in IA. Hence, IA is the circumcenter of PFEQ. ■

Claim 3. IAPCE are cyclic (and analogously IABFQ).
We consider the chord PE. Obviously, we have ∡ECP = γ. From the central angle - inscribed
angle theorem in PFEQ we obtain

∡EIAP = 2∡EQP = 2 · γ/2 = γ ,

i.e. ∡EIAP = ∡ECP and it follows claim 3. ■

Let G ̸= D be the intersection of line IAD and the incircle of ABC. We show that G is the
desired common point.

Claim 4. IAFGQ are cyclic (and analogously IAEGP ).
We consider the chord FIA. From the tangent chord angle theorem in the incircle of ABC, it
follows

∡FGIA = ∡FGD = ∡BFD = 90◦ − β/2 .

Since FQIA is isosceles and from the central angle - inscribed angle theorem in PFEQ we
have

∡FQIA = 90◦ − ∡QIAF

2 = 90◦ − 2∡QPF

2 = 90 − β/2 ,

i.e. ∡FGIA = ∡FQIA and IAFGQ is cyclic. ■

The statement follows directly from claim 4.

9
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A

B CD

E
F

I

P Q

G

IA

Solution 2. We denote by IA the center of the excircle opposite to the vertex A and by DA, EA

and FA the points of tangency of this excircle with the lines BC, CA and AB, respectively. As
usual we use the notations a = BC, b = CA and c = AB, s = a+b+c

2 , α = ∡BAC , β = ∡CBA,
γ = ∡ACB and rA for the radius of the excircle opposite to A.

Claim 1. PFEQ is cyclic with circumcenter IA.
By considering the tangent segments from the incircle and the excircle, we obtain the following
relations:

AE = AF = s − a , BP = BD = BF = CDA = s − b ,

CQ = CD = CE = BDA = s − c , AEA = AFA = s .

It follows that PDA = PB + BDA = s − b + s − c = a, DAQ = DAC + CQ = s − b + s − c = a,
EAE = AEA − AE = s − (s − a) = a and FAF = AFA − AF = s − (s − a) = a. We conclude
that the rectangular triangles IADAP , IADAQ, IAEAE and IAFAF are congruent with

(IAP )2 = (IAF )2 = (IAE)2 = (IAQ)2 = r2
A + a2 ,

which shows our claim. ■
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90◦

A

B CD

EF

P Q

EA

FA

DA

IA

Claim 2. BIAQF is cyclic (and analogously PIACE).
We show that ∡FIAB = ∡FQB which will prove the claim. From the central angle - inscribed
angle theorem in PQEF we obtain

∡FIAP = 2∡FQP .

On the other hand the triangles BIAF and BIAP are congruent, because they have the side
BIA in common, FIA = PIA and ∡BFIA = ∡IAPB (the last equation follows from the
congruence of the triangles IAFAF and IADAP ). Therefore, we have ∡FIAP = 2∡FIAB and
finally ∡FIAB = ∡FQB. ■

We denote the intersection of the circumcircles of PIACE and BIAQF by G.

Claim 3. ∡FGIA = 90◦ − β/2 (and analogously ∡IAGE = 90◦ − γ/2).
In the cyclic quadrilateral FIAQG we have ∡FGIA = ∡FQIA. In the isosceles triangle FIAQ

we obtain ∡FQIA = 90◦ − ∡QIAF/2. From the central angle - inscribed angle theorem in
PQEF we get ∡QIAF = 2∡QPF . In the isosceles triangle PBF with exterior angle β at B

we have ∡QPF = ∡BPFβ/2. Taken all together we get

∡FGIA = ∡FQIA = 90◦ − ∡QIAF/2 = 90◦ − 2∡QPF

2 = 90◦ − β/2 .

■
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A

B C

EF

P Q

G

IA

claim 4. DEGF is cylic.
From claim 3 we have

∡FGE = ∡FGIA + ∡IAGE = 90◦ − β/2 + 90◦ − γ/2 = 180◦ − β/2 − γ/2 .

On the other hand in triangle DEF we obtain

∡EDF = 180◦ − ∡FDB − ∡CDE = 180◦ − (90◦ − β/2) − (90◦ − γ/2) = β/2 + γ/2 ,

i.e. ∡FGE + ∡EDF = 180◦, which proves the claim. ■

The statement follows directly from claim 4.
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A

B CD

EF

I

G

Solution 3. Let E ′ ̸= E be the second intersection of the line ED with the circumcircle of
△PCE, and let F ′ ̸= F be the second intersection of the line FD with the circumcircle of
△QBF . Then we have

|DE| · |DE ′| = |DP | · |DC| = 2 · |DB| · |DC| = |DB| · |DQ| = |DF | · |DF ′|,

so EFE ′F ′ is a cyclic quadrilateral. Thus, ∡F ′E ′E = ∡F ′FE = ∡DFE = ∡CDE (where
at the last step we used that CD is tangent to the incircle of △ABC through D, E and F ).
Therefore the line E ′F ′ is parallel to the line BC.

Furthermore, since CEPE ′ is a cyclic quadrilateral by the definition of E ′, and since △CED

is an isosceles triangle with base DE, we have

∡E ′PD = ∡E ′PC = ∡E ′EC = ∡DEC = ∡CDE = ∡PDE ′.

This shows that △DPE ′ is isosceles with base PD. As B is the midpoint of DP , this we can
conclude that ∡E ′BC = ∡E ′BD = 90◦.

Analogously we can show that that △QDF ′ is isosceles with base QD and ∡BCF ′ = 90◦.

Combining the facts ∡E ′BC = 90◦ and ∡BCF ′ = 90◦ and E ′F ′||BC, we can conclude that
E ′F ′CB is a rectangle. Let S be the reflection of D upon the midpoint of this rectangle. Then

13
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S lies on the segment E ′F ′ and satisfies |E ′S| = |DC| and |SF ′| = |BD|. Then E ′SCD and
SF ′DB are parallelograms.

Using E ′S||PC and SC||E ′D and the fact that △DPE ′ is isosceles with base PD, we can
conclude that E ′SCP is an isosclese trapezoid. In particular, S is on the circle through E ′,
C and P (which also contains E). This implies that the five points E ′, S, C,E and P are all
on a common circle. Analogously we can show that the five points F ′, Q, F ,B and S are all
on a common circle. We concude, that S is one intersection of these two circles. Let G ̸= S

be the second intersection of these two circles. We need to show that G lies on the incircle of
△ABC

Now, we have (recalling that EFE ′F ′ is a cyclic quadrilateral)

∡SGE = ∡SE ′E = ∡F ′E ′E = ∡F ′FE = ∡DFE.

Analogously, we can show ∡FGS = ∡FED. Adding both of these equations, we obtain

∡FGE = ∡FGS + ∡SGE = ∡FED + ∡DFE = 180◦ − ∡EDF.

This shows that DEGF is a cyclic quadrilateral, so G lies on the incircle of △ABC through
D, E and F .

A

B CD

E
F

P Q

E ′ F ′S

G
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Solution 4.

Claim. Let PF ∩ QE = L. Then L ∈ ω.

Proof. Denote the angles of ABC∆ by α, β, γ as standard. By the equalities BD = BF = BP

and CD = CE = CQ, we have:

• ∠DPF = β
2 ,

• ∠EQD = γ
2 ,

• hence ∠FLE = 180◦ − β+γ
2 .

• ∠FDB = 90◦ − β
2 ,

• ∠EDC = 90◦ − γ
2 ,

• hence ∠EDF = 180◦ − ∠FDB − ∠EDC = β+γ
2 .

So ∠FLE + ∠EDF = 180◦, meaning that FLED is cyclic, showing the claim.

Now let G be the centre of the spiral similarity taking FE to PQ. It is well-known that
G = (LFE) ∩ (LPQ) = ω ∩ (LPQ).

Claim. The points G, P, C, E are concyclic.

Proof. Using the similarity of triangles GFE and GPQ, we have ∠CPG +∠GEC = ∠EFG +
(∠FEC +∠GEF ) = ∠FEC + (180◦ −∠FGE) = (180◦ −∠AEF ) +∠EDF = 90◦ + α

2 + β+γ
2 =

180◦.

Similarly, G, B, F, Q are concyclic, implying that (PCE) and (BQF ) meet at G, on ω.

A

D

I

G

L

B

F

Q

C

E

P
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I-4
A subset S of the integers is called Saxonian if for every three pairwise different elements a,
b, c ∈ S the number ab + c is the square of an integer. Prove that any Saxonian set is finite.
Determine the largest possible number of elements that a Saxonian set can have.

Answer. Every Saxonian set has at most 3 elements, and there exist Saxonian sets consisting
of exactly 3 elements.

Solution. The set {0, 1, 4} is an example of a Saxonian set with 3 elements, as is shown by
an easy calculation.

Thus, it remains to prove the following claim.

Claim: A Saxonian set can not have 4 or more elements.

Proof: Suppose, to the contrary, that there is such set S, and let a < b < c < d be some of its
elements. We distinguish between two cases.

First case. c ≥ 0.

Then one also has d > 0. If a < 0 then ad + c ≤ (−d) + c < 0 can not be a perfect square.
Therefore, it follows that, in fact, d > c > b > a ≥ 0.

Since S is Saxonian, cd + a = k2 and cd + b = l2, for some nonnegative integers k and l.
Moreover, b > a implies that l ≥ k +1, and by plugging in this inequality again, one finds

cd + b = l2 ≥ (k + 1)2 = k2 + 2k + 1 = cd + a + 2k + 1 .

This yields
k ≤ b − a − 1

2 . (1)

On the other hand, d > c > 0 and a ≥ 0 together imply

k2 = cd + a ≥ cd > c2 ,

which shows k > c.

But this leads to a contradiction, as inequality (1) implies k ≤ (b−a−1)/2 < b/2 < b < c.

16
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Second case. c < 0.

Then one also has a < 0. If d ≥ 0 then ad+ c ≤ (−d)+ c < 0 can not be a perfect square.
Therefore, it follows that a < b < c < d < 0.

Let us write a =: −A, b =: −B, c =: −C, and d =: −D. Then 0 < D < C < B < A.

Since S is Saxonian, ab + c = AB − C = k2 and ab + d = AB − D = l2, for some
nonnegative integers k and l. Moreover, D < C implies that l ≥ k + 1, and by plugging
in this inequality again, one finds

AB − D = l2 ≥ (k + 1)2 = k2 + 2k + 1 = AB − C + 2k + 1 .

This yields
k ≤ C − D − 1

2 . (2)

On the other hand, B > C > 0 and A > B together imply

k2 = AB − C > AB − B = (A − 1)B ≥ B2 ,

which shows k > B.

But this is impossible, as inequality (2) implies k ≤ (C − D − 1)/2 < C/2 < C < B.

Thus, both cases above turned out to be contradictory. Therefore, a Saxonian set of at least
four elements does indeed not exist.

Remark: There are many Saxonian sets of three elements. A computer experiment delivers
already 107 Saxonian sets {a, b, c} of integers −100 ≤ a < b < c ≤ 100. Among them, there
are very obvious ones such as those of type {0, i2, j2}, for positive integers i ̸= j, but as well
many others, such as {−98, −59, −6}.
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T-1
Bob has n coins with integer values

c1 ≥ c2 ≥ · · · ≥ cn > 0 .

He is standing in front of a vending machine that offers n candy bars with positive integer costs
b1, b2, . . . , bn. Bob notices that for every i ∈ {1, . . . , n}, it holds that

b1 + b2 + · · · + bi ≥ c1 + c2 + · · · + ci.

Furthermore, the total value of Bob’s coins equals the sum of the costs of all the candy bars.
The candy bars can be purchased in any order. In order to buy the i-th candy bar, Bob has
to insert coins of total value at least bi. However, the machine does not give him back any
change.

Prove that Bob can buy at least half of the candy bars.

Solution 1. Let m := ⌊n
2 ⌋ and let

S := b1 + b2 + · · · + bn = c1 + c2 + · · · + cn.

We call the coins with value c1, . . . , cm the valuable coins. In the following, we will show that
Pepa can buy the bars that cost bm+1, . . . , bn.

Rewriting the condition from the problem statement for i = m yields

b1 + b2 + · · · + bm ≥ c1 + c2 + · · · + cm,

⇐⇒ S − bm+1 − bm+2 − · · · − bn ≥ S − cm+1 − cm+2 + · · · + cn,

⇐⇒ cm+1 + cm+2 + · · · + cn ≥ bm+1 + bm+2 + · · · + bn. (†)

We can represent the situation visually by splitting an interval of length S into n segments
B1, . . . , Bn of length b1, . . . , bn in that order, and another interval of length S into n segments
C1, . . . , Cn of length c1, . . . , cn in that order. We view these two intervals side by side.

We would like to pay for the bar represented by Bi (where i > m) using the coins represented
by those segments that overlap the interval Bi. That would clearly be enough to pay for the
bar, but some coins might be used multiple times to pay for different bars. Luckily, because of
(†), we have not used any valuable coins at all. We just need to show that we can use these
valuable coins in place of the coins that were used multiple times.

When did we use the coin represented by Cj to pay for both the bars represented by Bi and
Bi+1? If and only if the boundary between Bi and Bi+1 lies inside the interval Cj. Hence, the

18
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b1

b2

b3

b4

b5

c1

c2

c3

c4
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c2
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c5

b1

b2

b3

b4

b5

c1

c2

c3

c4

c5

number of times we use the coin represented by Cj equals one plus the number of boundaries
inside of Cj. We are only buying n − m bars and thus the number of boundaries between them
is at most n − m − 1 ≤ m. (Some boundaries between the Bi’s might align perfectly with
boundaries between the Cj’s. In that case, the number of repeated uses of some coin will be
even smaller than n − m − 1.)

This means that we have enough valuable coins to cover for the coins used multiple times.
Each of these valuable coins is at least as valuable as any of the “original” coins that were used
multiple times, so we successfully pay for the chosen candy bars.

Solution 2. We may assume without loss of generality that b1 ≥ · · · ≥ bn. Indeed, if this
were not the case and π would be the permutation such that bπ(1) ≥ · · · ≥ bπ(n), then for every
i ∈ {1, . . . , n}, we would have

bπ(1) + · · · + bπ(i) ≥ b1 + · · · + bi ≥ c1 + · · · + ci.

Thus, the problem requirement is also fulfilled for bπ(1), . . . , bπ(n) instead of b1, . . . , bn.

Claim. The following holds:

(a) cn ≥ bn;

(b) cn−2k+1 + cn−2k ≥ bn−k, for each k ∈ {1, . . . , ⌈n/2⌉ − 1}.

19



MEMO 2025 Team T-1

Once we prove the claim, we are done because it explicitly shows how Pepe can buy the candy
bars which cost b⌊n/2⌋+1, . . . , bn.

Proof of the claim. First, we derive the inequality

cℓ + cℓ+1 + · · · + cn ≥ bℓ + bℓ+1 + · · · + bn (∗)

for any ℓ ∈ {1, . . . , n} in essentially the same way as in the first solution, where we did this
only for ℓ = m + 1. Taking (∗) for ℓ = n immediately justifies (a).

Now, because the sequences b1, . . . , bn and c1, . . . , cn both are weakly decreasing, for any k ∈
{1, . . . , ⌈n/2⌉ − 1}, we have

cn−2k + cn−2k+1
(1)
≥ 2

2k + 1 (cn−2k + cn−2k+1 + · · · + cn)
(∗)
≥ 2

2k + 1 (bn−2k + bn−2k+1 + · · · + bn)
(2)
≥ 2

2k + 1 (bn−2k + bn−2k+1 + · · · + bn−k)
(3)
≥ 2

2k + 1 · (k + 1) · bn−k.

These inequalities are justified as follows: (1) holds because the average of cn−2k, cn−2k+1 is
clearly at least as large as the average of cn−2k, . . . , cn, (2) is merely throwing away some non-
negative terms, and (3) is bounding the smallest element of bn−2k, . . . , bn−k by the average.
Overall, we obtain

cn−2k + cn−2k+1 ≥ 2k + 2
2k + 1 · bn−k > bn−k.
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T-2
Let R+ be the set of positive real numbers. Determine all functions f : R+ → R+ such that for
all numbers x, y ∈ R+, we have

f(xy) + f(x) = f(y)f
(
xf(y)

)
+ f(x)f(y) ,

and there exists at most one number a ∈ R+ such that f(a) = 1.

Answer. The function f(x) = 1/x is the only function solving the functional equation.

Proof that this is a solution. For the function f(x) = 1/x, we indeed have

f(xy) + f(x) = 1
xy

+ 1
x

= 1
y

· 1
x/y

+ 1
x

· 1
y

= f(y)f(xf(y)) + f(x)f(y)

for all x, y ∈ R+. The equality f(a) = 1 is only attained for f(a) = 1
a

= 1 ⇔ a = 1.

Proof that there are no other solutions. The solution consists of two parts. In the first
(more complicated) part, we show that f(1) = 1 follows from the functional equation, so 1 is
actually in the image of f . In the second part, we show then that f(x) = 1

x
is the only function

satisfying the functional equation where 1 is the unique preimage of 1 (i.e. where f(1) = 1 but
f(a) ̸= 1 for all a ̸= 1). For simplicity of notation, let in both parts P (x, y) denote the equality
from the problem and denote f(f(x)) by ff(x).

First part. We want to describe as much dependencies as possible in terms of 1 and f(1)
to finally show f(1) = 1. The key insights to this part are not being afraid of complicated
constants and looking at a simplified version of P (x, yf(1)) later.

Plugging in easy examples for x and y gives us

P (1, 1) =⇒ ff(1) = 2 − f(1) (1)

P (x, 1) (1)=⇒ f(f(1)x) = 2 − f(1)
f(1) f(x) = ff(1)

f(1) f(x) (2)

P (x, f(1)) (1),(2)=⇒ f(ff(1)x) = 2 − 2f(1) + f(1)2

f(1)ff(1) f(x) (3)

(2), (3) =⇒ f
(ff(1)

f(1) x
)

= 2 − 2f(1) + f(1)2

f(1)ff(1) f
( x

f(1)

)
= 2 − 2f(1) + f(1)2

ff(1)2 f(x). (4)

This allows us to simplify ff(1) and f(cx) for some constants c. Note that f(x) > 0, so all
denominators are positive.
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Now,

P (x, yf(1)) (2)=⇒ f(x) + f(f(1)xy) = f(f(1)y)f
(ff(1)

f(1) xf(y)
)

+ f(x)f(f(1)y)

(2),(4)=⇒ f(x) + ff(1)
f(1) f(xy) = 2 − 2f(1) + f(1)2

f(1)ff(1) f(y)f(xf(y)) + ff(1)
f(1) f(x)f(y),

(5)

using (2) and (4) to pull out the constant factors.

The identity (5) is similar to P (x, y) with different coefficients, so we may subtract a multiple
of P (x, y) to anihilate the term f(y)f(xf(y)) and get

(
1 − 2 − 2f(1) + f(1)2

f(1)ff(1)

)
f(x) + c · f(xy) = c · f(x)f(y)

(1)=⇒ −2(1 − f(1))2

f(1)(2 − f(1))f(x) = −c · f(xy) + c · f(x)f(y), (6)

where c is a constant we do not need to calculate.

As the right side of (6) does not change when we exchange x and y and the left side is constant
in y, we can conclude that the left side of (6) must also be also constant in x. So f(1) = 1 and
we are done with the first part, or we get that f is constant. But as 2 = f(1) + ff(1) by (1),
this also implies f(1) = 1.

Second part. We now know that f(1) = 1 and use it without further notice.

First, we note that the right side of the functional equation only depends on x and f(y), but
not on y, so for f(y1) = f(y2), we get

f(x) + f(xy1) = f(x) + f(xy2).

By choosing x = 1
y1

, this implies that f(y2
y1

) = f(1) = 1. By the assumption that there is at
most one a with f(a) = 1, this implies y1 = y2, so f is injective.

Now,

P (1, y) =⇒ 1 = f(y)ff(y) (7)
P (1, f(y)) =⇒ 1 = ff(y)fff(y)

so f(y) = 1
ff(y) = fff(y). By injectivity, we can conclude y = ff(y). So, (7) implies that

f(y) = 1
ff(y) = 1

y
for all y. In other words, the function f must be given by f(x) = 1/x for all

x ∈ R+.
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Second part, alternative. We have f(1) = 1 and use it without further notice. Moreover, we
have

P (1, y) =⇒ 1 = f(y)ff(y) (7)

P (f(x), f(x)) (7)=⇒ f(f(x)2) = (ff(x))2 (8)

P (f(x), x) (7),(8)=⇒ f(xf(x)) = 1 (9)

As 1 is the only preimage of the value 1 for the function f , from (9) we can deduce xf(x) = 1.
So we have f(x) = 1

x
for all x ∈ R+.
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T-3
A snake in an n × n grid is a path composed of straight line
segments between centres of adjacent cells, going through the
centres of all the n2 grid cells, which visits each cell exactly
once. Here two grid cells are considered to be adjacent if they
share an edge. Note that all pieces of the snake path are
parallel to grid lines. The figure shows an example of a snake
in a 4 × 4 grid. This snake makes nine 90◦ turns, marked by
small black squares.
Let us now consider a snake through the 2025 cells of a 45 × 45 grid. What is the maximum
possible number of 90◦ turns that such a snake can make?

Answer. The maximum number of 90◦ turns is 1979.

Optimal Construction. The maximum number 1979 if turns can be achieved by the “double
snail”. The following figure shows these for a 7 × 7 grid.

Such a double snail goes around the board in L-shaped layers of width 2, as is depicted in the
figure. There are two cells in each layer it passes straight through. The only other non-corners
are the starting and ending point, which gives 452 − 44 − 2 = 1979 turns.

Proof of that at most 1979 turns are possible. Color the table as shown in the figure above:
color like in chess, but instead of black, color alternately by red and blue, with red in the corners
of the table. This gives 232 red and 222 blue cells, so there are 45 more red cells than blue cells.
If the snake turns in a white cell, the cells immediately before and after are of different colors
(one is red and one is blue). Thus, when considering the sequence of colored (red or blue) cells
along the snake, between any two consecutive red cells in this sequence, the snake must pass
through a white cell without turning there. The sequence of colored cells consists of 232 red
cells and 222 blue cells, so in this sequence there must be at least 232 − 222 − 1 = 2 · 22 = 44
pairs of consecutive red cells. Therefore, there must be at least 44 white cells on which the
snake is not turning. Together with the two endpoints of the snake (which must be on colored
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cells since the snake is alternating between colored cells and white cells, and there are more
colored than white cells), we find at least 46 cells where the snake does not make a 90◦ turn.
Thus, we can have at most 452 − 46 = 1979 turns, as claimed.

Alternative proof that at most 1979 turns are possible. Consider a snake in a 45×45 grid.
We call a cell straight if the snake does not have a 90◦ turn in that cell. In particular, the first and
the last cell of the snake are straight. We will show that the snake has at least 46 straight cells.
This implies that the number of 90◦ turn of the snake is at most 452 −46 = 2025−46 = 1979.

Claim 1. Each row and each column of the grid contains at least one straight cell.

Proof. Indeed, consider any row R, and suppose that R does not contain a straight cell. In
particular, the start and end of the snake cannot be in R. When traversing the snake from
start to end, the snake will enter R vertically from the top or bottom, turn to take a horizontal
step along R to a neighboring cell, and then turn away vertically again. Later, the snake will
enter R again, take another horizontal step along R to a neighboring cell, and then leave R

again; and so on. In particular, there would need to be equally many cells in R, where the
snake enters R and where the snake exits R. However, this is impossible, since R contains 45
cells, which is an odd number.

For columns, the proof is similar.

This already shows the existence of at least 45 straight cells.

Now, let us assume without loss of generality that the first step of the snake (from the starting
point to its second cell) is horizontal (otherwise we can consider a reflection of the snake along
the main diagonal of the grid). Let the first two cells of the snake be in row R.

Claim 2. R contains another straight cell besides the first cell of the snake.

Once we have proved the claim, we are done since R contains at least 2 straight cells, and each
of the other 44 rows contains at least one straight cell (making a total of at least 46 straight
cells).

Proof of Claim 2. Suppose that R does not contain another straight cell besides the start of
the snake. In particular, the end of the snake cannot be in R. When traversing the snake from
start to end, the snake will start in R, take a horizontal step along R to a neighboring cell, and
then turn away vertically. Afterwards, the snake would enter vertically, take a horizontal step
along R to a neighboring cell, and then exit R again there. In particular, there would need to
be equally many cells in R, where the snake starts or enters R and where the snake exits R.
However, this is impossible, since R contains 45 cells, which is an odd number.
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Comments. The problem (and the solutions) can be generalized in a straightforward way for
any odd n in place of 45, the maximum possible number of turns is then n2 − n − 1.

For even n, the “double snail” construction gives the value n2 − n, but we do not have a proof
of its optimality.
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T-4
Let n be a positive integer. In the province of Laplandia there are 100n cities, each two
connected by a direct road, and each of these roads has a toll station collecting a positive
amount of toll revenue. For each road, the revenue of its toll station is split equally between
the two cities at the ends of the road (meaning that each of the two cities receives half of the
income). For each city, the total toll revenue is given by the sum of the revenues it receives
from the 100n − 1 toll stations on its roads.

According to a new law, the revenues of some of the toll stations will be collected by the federal
government instead of by the adjacent cities. The governor of Laplandia is allowed to choose
those toll stations. The mayors of the cities demand that for each city, the sum of the remaining
revenues it receives from the other toll stations after this change is at least 99% of its former
total toll revenue.

Find the largest positive integer k, depending on n, such that the governor can always choose k

toll stations for the federal government to collect the toll revenue, while satisfying the demand
of the city mayors.

Answer. k = 100
(

n
2
)
.

We consider a complete graph whose vertex set is the set of the 100n cities in Laplandia. We
assign weights to the edges, where for every edge the weight is the revenue from the toll station
of the corresponding road that each of the two cities at its endpoints receives (i.e. half of the
total revenue of the road). The question now asks how many edges can be removed such that
at each vertex the sum of the weights of the incident edges decreases by at most 1%.

Proof of k ≤ 100
(

n
2
)
. Let us consider an assignment of edge weights, where the weights on all

of the edges are equal (meaning that each road collects the same amount of toll revenue). In
this case, one cannot remove more than 1% of the 100n − 1 edges incident to any vertex. Thus,
at every vertex at most ⌊ 1

100(100n − 1)⌋ = n − 1 edges can be removed. So by the handshake
lemma, the total number of edges that can be removed is at most 1

2(n − 1)(100n) = 100
(

n
2
)
.

Proof of k ≥ 100
(

n
2
)
. Now consider any assignment of positive edge weights. We need to

show that we can remove 100
(

n
2
)

edges in such a way that at every vertex the sum of the edge
weights is decreased by at most 1%.

Partition the vertices of the graph into 100 (not necessarily equally sized) parts to minimize
the sum of the weights of all edges whose endpoints lie in the same part of the partition. By
the minimality of this choice, we have the following: For any vertex v in part P and any other
part P ′, the sum of the weights of the edges going from v to P ′ is at least as large as the sum
of the weights of the edges going from v to the other vertices in P (otherwise we could move
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v from P to P ′ and improve our partition). Therefore, for each vertex v, the edges from v

to the other vertices in P contribute at most a fraction of 1
100 = 1% of the total sum of the

weights at vertex v. Thus, we can remove all edges whose end vertices belong to the same part
in the partition, and this will decrease the sum of the weights at every vertex by at most 1%.
It remains to show that when doing this, we remove at least

(
n
2
)

edges.

Letting a1, a2, . . . , a100 be the sizes of the parts of the vertex partition (where a1 + · · · + a100 =
100n), the number of removed edges isÇ

a1

2

å
+
Ç

a2

2

å
+ · · · +

Ç
a100

2

å
=

100∑
i=1

1
2(a2

i − ai) = 1
2(a2

1 + a2
2 + · · · + a2

100) − 50n

≥ 50n2 − 50n = 100
Ç

n

2

å
,

where the inequality follows from the inequality between arithmetic and quadratic mean.
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T-5
Let ABC be an acute triangle with AB < AC. Denote by D the foot of the perpendicular from
A to BC. Let E be the point such that ABEC is a parallelogram. Let M be a point inside
triangle ABC such that MB = MC. Let F be the reflection of point D across the tangent to
the circumcircle of triangle ADM at point M . Prove that AF = DE.

Solution 1. Let D′ be the projection of E on BC. The parallelogram ABEC is point sym-
metric with respect to the center of the line segment BC. Therefore, D and D′ are also
symmetric with respect to this center and we obtain DE = AD′. Hence we only need to prove
AD′ = AF .

Let T be the center of the line segment DF . By definition of the point F , the line TM is the
tangent to the circumcircle of ADM at M and MD = MF . In addition we have MD = MD′

since the point M is on the perpendicular bisector of BC and D and D′ are symmetric with
respect to this bisector. It follows that M is the circumcenter of triangle DFD′.

From the tangent chord angle theorem with chord DM in the circumcircle of ADM we obtain
∡DAM = ∡DMT . Furthermore, we have ∡DMT = ∡TMF and ∡DMF = 2∡DMT =
2∡DAM . In the circumcircle of DFD′ with center M we obtain

∡DD′F = 1
2∡DMF = ∡DAM .

We denote by I the intersection point of AM and D′F . From ∡DAI = ∡DAM = ∡DD′F =
∡DD′I it follows that A, D, I, D′ are concyclic.

In the cyclic quadrilateral ADID′ with chord AD′ we obtain 90◦ = ∡D′DA = ∡D′IA, i.e
AM ⊥ D′F . Since MF = MD′ it follows that AM is the perpendicular bisector of FD′ and
we have AF = AD′, as required.
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90◦

90◦

A

B CD

E

D′

F

M

T I

Solution 2. As shown in the first solution we only have to prove, that AF = AD′, where D′

is the reflection of D with respect to the perpendicular bisector of the line segment BC.

In the triangle ADM we denote the projection of the point M onto the line AD by S and
∡DAM = α and ∡MDA = δ. In the rectangular triangles ASM and MSD the following
relations hold:

AM2 = AS2 + SM2 , AS = AM cos(α) , SM = AM sin(α)
DM2 = DS2 + SM2 , DS = DM cos(δ) , SM = DM sin(δ) . (1)

Let T be the center of the line segment DF . By definition of the point F we have MD = MF

and ∡DMT = ∡TMF and the line TM is the tangent to the circumcircle of ADM at M .
From the tangent chord angle theorem with chord DM in the circumcircle of ADM we obtain
α = ∡DMT . It follows

∡AMF = ∡AMD + ∡DMT + ∡TMF

= (180◦ − δ − α) + 2α

= 180◦ − δ + α . (2)
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Using the law of cosine in the triangle AFM we obtain

AF 2 = AM2 + MF 2 − 2AM · MF · cos(∡AMF )
= AM2 + MD2 + 2AM · MD · cos(−δ + α)
= (AS2 + SM2) + (SD2 + SM2) + 2AM · MD (cos(α) cos(δ) + sin(α) sin(δ))
= AS2 + SD2 + 2AS · SD + 4SM2 = AD2 + 4SM2 . (3)

Since the point M is on the perpendicular bisector of the line segment D′D and MS is parallel
to DD′ we have DD′ = 2MS. Finally we get AF 2 = AD2 + (2SM)2 = AD2 + D′D2 = AD′2,
as required.

90◦

90◦

A

D

M

T

F

S

α

δ

Solution 3. Let Z be the midpoint of BC. By definition of E, the point reflection in Z maps
E to A; let it map D to D′. By the choice of M , MZ is the perpendicular bisector of BC, so the
reflection across MZ also maps D to D′. Consider the concatenation with the reflection across
AM which maps D′ to some point D′′. This concatenation is a rotation about the common
point M of both axes by 2∠(MZ, AM) = 2∠DAM = ∠DMF , since DA ∥ MZ and ∠DMF

is by construction twice the tangent angle of DM at M . So D is mapped to F , i.e. F = D′′,
and we get |AF | = |AD′′| = |AD′| = |ED|.
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90◦

A

B CD

E

D′

F = D′′

M

Z
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T-6
Let ABC be an acute triangle with an interior point D such that ∠BDC = 180◦ −∠BAC. The
lines BD and AC intersect at the point E, and the lines CD and AB intersect at the point F .
The points P ̸= E and Q ̸= F lie on the line EF so that BP = BE and CQ = CF . Assume
that the segments AP and AQ intersect the circumcircle ω of ABC at the points R ̸= A and
S ̸= A, respectively. Prove that the lines RF and SE intersect on ω.

Solution 1. First of all, points A, F, D, E are concyclic due to ∠EDF = ∠BDC = 180◦ −
∠BAC.

Denote by T the intersection point of segments AD and EF . We will prove that ATBP is
a cyclic quadrilateral, by angle chasing:

∠BAT = ∠FAD = ∠FED = ∠PEB = ∠BPE = ∠BPT.

Analogously, ATCQ is a cyclic quadrilateral.

Consider triangle APQ and points R, S, T on its sides. Miquel’s theorem gives that there is
a common point M of the circumcircles of ARS, PTR, and QST .

A

B
C

D

E
F

P

Q

R S

M

T

Let us look at the cyclic quadruples (P, R, T, M), (A, T, B, P ), and (A, R, B, M). Due to the
radical axis theorem, the lines PT , AB, and RM are concurrent, which proves that the points
R, F, M are collinear.

Analogously, the cyclic quadruples (Q, S, T, M), (A, T, C, Q), and (A, S, C, M) give that points
S, E, M are collinear, which finishes the proof.
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Solution 2. Let X be the intersection of BP and CQ.

Claim 1. X is on ω.
Because the triangles PBE and FCQ are isosceles we have ∡BPE = ∡PEB and ∡CFQ =
∡FQC. It follows in the triangles PXQ and FDE

∡QXP = 180◦ − ∡BPE − ∡FQC = 180◦ − ∡PEB − ∡CFQ = ∡EDF = 180◦ − ∡BAC.

If X and A lie on opposite sides of line BC, then the claim 1 follows directly. If X and A lie on
the same side of line BC, then it follows that ∡BXC = 180◦ − ∡QXP = ∡BAC and finally
claim 1.

Let Y be the intersection of BS and CR.

Claim 2. The point Y is on the line PQ = EF .
By Pascal’s theorem applied to BSARCX the points BS ∩ CR = Y , SA ∩ CX = Q and
AR ∩ XB = P are on one line, which proves claim 2.

Let Z ̸= S be the second intersection of SE with ω.

Claim 3. Z is on the line RF .
By Pascal’s theorem applied to BSZRCA the points BS ∩ RC = Y , SZ ∩ CA = E and
ZR ∩ AB are on one line. Because of claim 2 Y is on EF and therefore the point ZR ∩ AB is
also on EF , i.e. F = ZR ∩ AB and R, F and Z are on one line.

It follows that Z is the intersection of RF and SE which is also on ω.

A

B C

D

E
F

R

S

P

Q

X

Y

Z
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Sketch of a solution using spiral similarity Let X = BP ∩CQ. As in the second solution, we
have X ∈ ω. Now let G ̸= X be the second intersection of circles (XBC) = ω and (XPQ).

Claim. We have △GFE ∼ △GRS.

Proof. By the spiral similarity lemma, △GBC ∼ △GPQ. So

∠GPE = ∠GPQ = ∠GBC = ∠GAC = ∠GAE,

implying that GEAP is a cyclic quadrilateral. This yields

∠FEG = ∠PEG = ∠PAG = ∠RAG = ∠RSG.

Similarly, GFAQ is cyclic and we obtain ∠GFE = ∠GRS. Therefore, △GFE ∼ △GRS.

From the claim, the spiral similarity lemma yields that RF ∩ SE lies on (GRS) = ω.

Remark. Point G satisfies (A, G; B, C) = −1 and is in particular fixed when D moves.

ωA

B C

D

E
F

G

P

Q

R
S

X
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T-7
Let n be a positive integer such that the sum of positive divisors of n2 + n + 1 is divisible by 3.
Prove that it is possible to partition the set of positive divisors of n2 + n + 1 into three sets
such that the product of all elements in each set is the same.

Solution. We first prove the following lemma.

Lemma. Let p be prime divisor of n2 + n + 1. Then p = 3 or p ≡ 1 (mod 3).

Proof. We have n2 + n + 1 ≡ 0 (mod p). Multiplying by n − 1, we get n3 ≡ 1 (mod p).
Thus, the order of n modulo p is either 1 or 3. If the order is 1 then n ≡ 1 (mod p), hence
0 ≡ n2 +n+1 ≡ 3 (mod p), and p = 3. Otherwise, the order of n modulo p, which must divide
p − 1 according to Fermat, is 3. Therefore, p ≡ 1 (mod 3).

We now come back to the original problem.

Let m := n2 + n + 1 and consider the prime decomposition m = pα1
1 · . . . · pαk

k of m. Then the
sum of the divisors of m is

σ(m) = σ(pα1
1 ) · . . . · σ(pαk

k ) = (1 + p1 + p2
1 + · · · + pα1

1 ) · . . . · (1 + pk + p2
k + · · · + pαk

1 ) .

The assumption implies that at least one of the factors on the right hand side is divisible by 3.

If pi = 3 then (1 + pi + p2
i + · · · + pαi

i ) is not divisible by 3. Hence, there must be some prime
factor pj ≡ 1 (mod 3) such that 3 | (1 + pj + p2

j + · · · + p
αj

j ), which shows αj ≡ 2 (mod 3).
The number of divisors of m is d(m) = d(pα1

1 ) · . . . · d(pαk
k ) = (α1 + 1) · . . . · (αk + 1). Since

αj ≡ 2 (mod 3), one may conclude that the number of divisors of m is divisible by 3, too.

Moreover, one observes that m is not a perfect square. Indeed, n2 < m = n2 + n + 1 < (n + 1)2.
Let d be any divisor of m. Then m

d
is also a divisor of n, and d ̸= m

d
. Thus, one may pair every

divisor d of m with the complementary divisor m
d

. The product of the elements of any of these
pairs is then equal to m

Since the number of divisors is divisible by 3, the same is true for the number of pairs. One can
therefore split the set of these pairs into three subsets such that each subset consists of the
same number of pairs. This leads to three groups of divisors, and the product of all elements
of each group must be the same.

Remarks: 1. There are other, less elegant ways to describe a partition of the divisors of
n2 + n + 1 into three groups such that each group has the same product. Let us indicate at
least one of them.
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Write m = p
αj

j · N , for N := m/p
αj

j , and suppose that αj ≡ 2 (mod 3). Then every divisor
of m may uniquely be written in the form pa

j · n, for 0 ≤ a ≤ αj and n | N . Let us distinguish
between two cases.

αj ≡ 5 (mod 6).

Then write αj = 6l − 1, for a positive integer l, and put

G1 := {pa
j · n | 0 ≤ a ≤ l − 1 or 5l ≤ a ≤ 6l − 1} ,

G2 := {pa
j · n | l ≤ a ≤ 2l − 1 or 4l ≤ a ≤ 5l − 1} , and

G3 := {pa
j · n | 2l ≤ a ≤ 4l − 1} .

αj ≡ 2 (mod 6).

Then N is a non-square. Put, at first,

G1 := {pa
j · n | a ≡ 1 (mod 3)} .

The remaining divisors of m come in blocks of four, and are distributed among G2 and G3

according to the following rule. If pa
j · n is put into G2 then put p

αj−a
j · (N/n) into G2,

as well, but put p
αj−a
j · n and pa

j · (N/n) into G3.

2. The smallest positive integer n such that the sum of the positive divisors of n2 + n + 1 is
divisible by 3 is n = 22. Then

n2 + n + 1 = 507 = 3 · 132

and σ(507) = (1 + 3) · (1 + 13 + 132) ≡ 0 (mod 3).

37



MEMO 2025 Team T-8

T-8
Determine whether the following statement is true for every polynomial P of degree at least 2
with nonnegative integer coefficients:

There exists a positive integer m such that for infinitely many positive integers n the num-
ber P n(m) has more than n distinct positive divisors.

Remark. Here P n denotes P applied n times, this means P n(x) = P (P (. . . P︸ ︷︷ ︸
n times

(x) . . . )).

Answer. Yes, there is always a positive integer m such that P n(m) has more than n distinct
positive divisors for infinitely many positive integers n.

Solution. We will show that

m =

2 , for P (0) = 0 ,

P (0) , for P (0) > 0 ,

works.

Let τ(r) denote the number of distinct positive divisors of the positive integer r.

Case 1: P (0) = 0.

Since the polynomial P has degree at least two and non-negative coefficients, one has
P (ℓ) ≥ ℓ2 > 2, for every ℓ ≥ 2. In particular, one may conclude inductively that

P k(2) > P k−1(2) > 2

holds, for every integer k ≥ 2.

Furthermore, P (0) = 0 implies x | P (x), whence each divisor of P k−1(2) is a divisor of
P k(2), too. Together with the fact that P k(2) > P k−1(2) has at least one further divisor
(itself), one knows that τ(P k(2)) ≥ τ(P k−1(2)) + 1, for every integer k ≥ 2. From this,
by induction, one gets

τ
(
P k(2)

)
≥ τ

(
P (2)

)
+ k − 1 ≥ 2 + k − 1 > k ,

as asserted.

Case 2: P (0) > 0.

The following lemma is essential.
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Lemma. Let A and B be integers such that A | B and B > A2. Then

τ(B) ≥ 2τ(A) .

Proof. One has B > A2 ≥ 1, so that B has at least one prime factor. Thus, one can write
B = pb1

1 pb2
2 . . . pbi

i , for distinct primes pj and positive integers bj. Moreover, since A | B,
one has A = pa1

1 pa2
2 . . . pai

i , for non-negative integers aj such that aj ≤ bj.

The assumption B > A2 implies the existence of an index k such that bk > 2ak. Since

τ(B) =
i∏

j=1
(bj + 1) and τ(A) =

i∏
j=1

(aj + 1) ,

it turns out that indeed

τ(B)
τ(A) =

i∏
j=1

bj + 1
aj + 1 ≥ bk + 1

ak + 1 ≥ (2ak + 1) + 1
ak + 1 = 2 .

Corollary. Let Q(x) be a polynomial with non-negative coefficients and degree at least 2,
such that Q(0) > 0. Then

τ
(
Q
(
Q(0)

))
≥ 2τ

(
Q(0)

)
.

Proof. Since Q has integer coefficients, (a − b) |
(
Q(a) − Q(b)

)
, for any integers a and b.

In particular,
(
Q(0) − 0

)
|
(
Q
(
Q(0)

)
− Q(0)

)
, so Q(0) |

(
Q
(
Q(0)

)
− Q(0)

)
and

Q(0) | Q
(
Q(0)

)
.

If we write Q(x) = adxd + . . . a1x + a0 then a0 = Q(0) > 0, so

Q(x) ≥ adxd + a0 > adxd ≥ xd ≥ x2 ,

for any non-negative integer x. In particular, Q
(
Q(0)

)
> Q(0)2 ≥ 1.

Thus, the lemma applies with A := Q(0) and B := Q
(
Q(0)

)
, and shows that indeed

τ
(
Q
(
Q(0)

))
≥ 2τ

(
Q(0)

)
.

Returning to the original problem, let us put m := P (0). We will show by induction
on k that, for all n := 2k − 1, the value P n(m) = P 2k(0) has at least n + 1 = 2k positive
divisors.

For k = 1, the corollary implies that P
(
P (0)

)
has at least 2 positive divisors, which is

exactly what is stated.

Finally, when the statement is to be shown for some fixed k ≥ 2, one may suppose that
it is already known for k − 1. Then, using the induction hypothesis and the corollary for
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Q := P 2k , one gets

τ
Ä
P 2k−1(m)

ä
= τ
Ä
P 2k(0)

ä
= τ
Ä
P 2k−1Ä

P 2k−1(0)
ää

≥ 2τ
Ä
P 2k−1(0)

ä
≥ 2 · 2k−1 = 2k .

This completes the solution.
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