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Let R be the set of positive real numbers. Let f: RT™ — RT be a function such that for all
x,y € RT it holds that

yf*%(z) = xf(y).

Show that there exists a positive integer ngy such that for all positive integers n > ng and for
all z € R" it holds that

f(x) = .
Remark. Here f™ denotes the function f applied n times, this means f™(z) = f(f(... f(x)...)).
n times

Solution. By assumption, we know that zf(y) < yf?°?°(z) for all z,y € RT. Plugging in
y = x, we can deduce that f(x) < f20%(x) for all z € R,

We claim that there is some y € R with y < f(y). To see this, recall that f(1) < f2%°(1).
Therefore, there must be some i € {1,2,...,2024} such that f*(1) < fi1(1). Taking y = f*(1)
shows that there indeed exists some y € R* with y < f(y).

Now, taking y € R with y < f(y) and any = € R", note that we have

wf(y) < yf%(x) < f(y) 2 (),

implying z < f2°%5(z). Thus, we have x < f29?°(z) for all z € RT.

So, we have shown that for any z € R we have z < f29%°(z) and f(z) < f2°%(x). In particular,
applying this to f™(z) and to f™~1(x) for any integer m > 2, we obtain f™(x) < fmT2925(z)
and fm(x) < fmT2924(g). Applying this repeatedly, we can therefore conclude that f™(x) <

Jrt 2024402025 () for any x € RT, any integer m > 2, and any non-negative integers a and b.

Finally, we claim that for any n > 2025 and any # € RT we have x < f"(x). Note that
n — 2025 > 2024 - 2025, and so (as 2024 and 2025 are coprime) we can write n — 2025 =

a - 2024 + b - 2025 for some non-negative integers a and b. Thus, we can conclude that
T < f2025(l‘) < f2025+a-2024+b-2025(x) — fn(l’)

as desired.
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I-2

On an infinite square grid, on which some unit squares are coloured red, a ruby rook is a piece
which, in one move, can travel any number of squares in one direction parallel to one of the grid
lines (either vertically or horizontally), while remaining on red squares at all times throughout

the move.

Starting with an uncoloured infinite square grid, Alice performs the following procedure: First,
she colours at most 2025 of the unit squares red. Afterwards, she places some ruby rooks on

distinct red unit squares, such that the following two rules are satisfied:
o No ruby rook can reach another ruby rook in one move.
o Every ruby rook can reach every other ruby rook in two moves.

Find the maximum possible number of ruby rooks that Alice can place during this proce-

dure.

Answer. The maximum number of ruby rooks that Alice can place is 63.

Proof that 63 ruby rooks can be placed. Consider a staircase-shaped red area made up of
63 rows ranging from length 1 to 63 (see the figure below). It is possible to place 63 ruby rooks

along the main diagonal of the red shape since:

e No ruby rook can reach another ruby rook in one move since there is at most one ruby

rook in every row and in every column.

o Every ruby rook can reach every other ruby rook within two moves. Indeed, it can first
move horizontally to the left to a square in the same column as the other ruby rook, and
then move vertically upwards to the other ruby rook or first move vertically downwards
to a square in the same row as the other ruby rook and then horizontally to the right to

the second ruby rook.

The number of red squares is w = 2016 < 2025, satisfying the condition in the problem

statement.
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Proof that at most 63 ruby rooks can be placed. Assume that Alice places n ruby rooks,
and let us enumerate them from 1 to n. For any two ruby rooks 1 < i < 7 < n on the grid,
there must exist a red square that both ruby rook ¢ and ruby rook j can reach in one move,
and let us call this red square S; ; (if such a square did not exist, then it would not be possible
for ruby rook ¢ to get to ruby rook j in two moves). Note that if (i, 5) # (¢, j'), then S; ; and
Sy are distinct; otherwise, we would have three ruby rooks that can reach the same square,
which would imply that we have a pair of ruby rooks in the same row or column that can reach
each other in one move. Note that none of the n red squares with a ruby rook can coincide

with any square S, ;, and the squares S;; are also all red. Since the number of squares S; ; is

(g), we get
(g) +n < 2025.

This implies (n+3)* — 3 =n(n+1) =n(n—1)+2n =2- () +2n < 4050 < 4096 — ;. Thus,
(n+ %)2 < 4096 = 642, and we can conclude that n+% < 64. Since the number n of ruby rooks

is an integer, this implies n < 63.
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Let ABC' be a triangle. Its incircle w touches the sides BC', C'A and AB at points D, F and
F, respectively. Let P and () be points on the line BC distinct from D such that PB = BD
and QC' = CD. Prove that the circumcircles of the triangles PC'E and QBF and the circle w

pass through a common point.

Solution 1.

We denote the interior angles in the triangle ABC' by a := LBAC,  := LCBA and v :=
LACB.

Let I4 be the center of the excircle opposite to the vertex A. By the definition of P and because
BE and BD are tangent to the incircle of ABC we have BP = BD = BFE. Therefore the

triangle BF'P is isosceles with base PF' and

180° — LFBP _§

APFB = ABPF =
2 2

In the same way, it follows in triangle C EQ) that C'Q) = CE and

(CEO — cEQC — 1 —;{QCE:;

Claim 1. PFEQ are cyclic.
To this end we consider the chord F'() and show {QPF + £ FFE(Q = 180°. We have shown that
£LQPF = (/2. On the other hand we obtain

{FEQ = AFED + ADEC + £CEQ = £FDB + (90° — 7/2) + v/2
= (90° — 8/2) +90° = 180° — /2

which proves the claim. [
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Claim 2. I, is the circumcenter of PFEQ).

The triangles BFP and CQFE are isosceles. Therefore, the perpendicular bisectors of of the
line segments PF and QF are the bisectors of the exterior angles at B and C| respectively. On
the one hand these two lines intersect in the circumcenter of PFEQ, on the other hand they

intersect in I4. Hence, 14 is the circumcenter of PFEQ). [ |

Claim 3. [4PCE are cyclic (and analogously I4BFQ).
We consider the chord PE. Obviously, we have L EFC'P = . From the central angle - inscribed
angle theorem in PF E(Q) we obtain

AEIZP =2{FEQP =2-~v/2=~ |

ie. LEI4P = LECP and it follows claim 3. [ |

Let G # D be the intersection of line 14D and the incircle of ABC. We show that G is the

desired common point.

Claim 4. I4FGQ are cyclic (and analogously I4EGP).
We consider the chord F'I4. From the tangent chord angle theorem in the incircle of ABC), it

follows
LFGIy = LFGD = ABFD =90° — /2

Since F'QI, is isosceles and from the central angle - inscribed angle theorem in PFEQ we

have LQILF 24QPF
LFQI, = 90° — 2A =90° - = =90-5/2
ie. LFGIy = £FQI, and [,FGQ is cyclic. [ |
The statement follows directly from claim 4. m
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Solution 2. We denote by I4 the center of the excircle opposite to the vertex A and by D, E4
and F4 the points of tangency of this excircle with the lines BC', C'A and AB, respectively. As
usual we use the notations a = BC, b= CAand ¢ = AB, s = “t4¢ o = LBAC , f = LCBA,

v = LACB and r4 for the radius of the excircle opposite to A.

Claim 1. PFEQ is cyclic with circumcenter 4.
By considering the tangent segments from the incircle and the excircle, we obtain the following

relations:

AF=AF=s—a , BP=BD=BF=CDjys=s—-b ,
CQ:CD:CE:BDA:S—C y AEA:AFA:S

It follows that PDy = PB4+ BDys=s—b+s—c=a,Ds,Q =D,C+CQ=s—b+s—c=a,
E,E = AE,— AE =s—(s—a) =a and FyF = AFy — AF = s — (s — a) = a. We conclude
that the rectangular triangles oD P, 14D AQ, [4E4FE and [4F4F are congruent with

(InP)? = (I4F)? = (I4E)* = (1,Q)* =14 +a*

which shows our claim. [ |

10
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Claim 2. BI,QF is cyclic (and analogously PI,CFE).
We show that L FI4B = £ FQB which will prove the claim. From the central angle - inscribed
angle theorem in PQFEF we obtain

AFI,P =24FQP

On the other hand the triangles BI4F and BI4P are congruent, because they have the side
BI, in common, FI4 = Ply and {BFIy = £I4PB (the last equation follows from the
congruence of the triangles Iy F4F and I4D4P). Therefore, we have LFI,P = 2L FI4B and
finally L{FIaB = {FQB. |

We denote the intersection of the circumcircles of PI4CE and BI,QF by G.

Claim 3. AFGI4 =90° — 5/2 (and analogously LI4GE = 90° — v/2).

In the cyclic quadrilateral FI,QG we have L FGI4 = AFQI4. In the isosceles triangle F'140)
we obtain LFQI4 = 90° — £QI4F/2. From the central angle - inscribed angle theorem in
PQEF we get LQI F = 2£QPF. In the isosceles triangle PBF with exterior angle g at B
we have LQPF = £ BPF[3/2. Taken all together we get

24QPF

LFGIy = £FQIy = 90° — £QIF/[2 = 90° — ==

= 90° — /2 .

11
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claim 4. DEGF is cylic.

From claim 3 we have
AFGE = LFGIs+ £IAGE =90° — /2 +90° — v/2 = 180° — /2 — /2
On the other hand in triangle DEF we obtain
LEDF =180° — LFDB — LCDE = 180° — (90° — 3/2) — (90° — v/2) = B/2 + /2

ie. LFGE + £LEDF = 180°, which proves the claim. |

The statement follows directly from claim 4.

Y

12
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Solution 3. Let £’ # E be the second intersection of the line FD with the circumcircle of
APCE, and let F’ # F be the second intersection of the line F'D with the circumcircle of
AQBEF. Then we have

|DE| - |[DE'| = |DP|-|[DC| =2 [DB|-|DC| = |DB| - |DQ| = |[DF| - |[DF',

so EFE'F' is a cyclic quadrilateral. Thus, L F'E'E = AF'FE = ADFE = LCDE (where
at the last step we used that C'D is tangent to the incircle of AABC through D, E and F).
Therefore the line E'F’ is parallel to the line BC.

Furthermore, since CEPE’ is a cyclic quadrilateral by the definition of E’, and since ACED
is an isosceles triangle with base DFE, we have

AE'PD = {E'PC = AF'EC = KDEC = LCDE = {PDFE'.
This shows that ADPE’ is isosceles with base PD. As B is the midpoint of DP, this we can
conclude that £ E'BC' = L E'BD = 90°.
Analogously we can show that that AQDF’ is isosceles with base QD and £ BC'F' = 90°.

Combining the facts LF'BC = 90° and L BCF’ = 90° and E'F'||BC, we can conclude that
E'F'CB is a rectangle. Let S be the reflection of D upon the midpoint of this rectangle. Then

13
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S lies on the segment E'F’ and satisfies |E'S| = |DC| and |SF'| = |BD|. Then E'SCD and
SF'DB are parallelograms.

Using E'S||PC and SC||E'D and the fact that ADPE’ is isosceles with base PD, we can
conclude that E'SCP is an isosclese trapezoid. In particular, S is on the circle through F’,
C' and P (which also contains F). This implies that the five points E’, S, C,E and P are all
on a common circle. Analogously we can show that the five points F’, ), F,B and S are all
on a common circle. We concude, that S is one intersection of these two circles. Let G # S

be the second intersection of these two circles. We need to show that G lies on the incircle of
NABC

Now, we have (recalling that EFE'F’ is a cyclic quadrilateral)
ASGE = ASE'E = {F'F'E = {F'FE = {DFE.
Analogously, we can show L FGS = {FED. Adding both of these equations, we obtain
AFGE = AFGS + £SGE = {FED + {DFE = 180° — LEDF.

This shows that DEGF' is a cyclic quadrilateral, so G lies on the incircle of AABC' through
D, E and F.

14
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Solution 4.
Claim. Let PFNQE = L. Then L € w.

Proof. Denote the angles of ABCA by «, 3,7 as standard. By the equalities BD = BF = BP
and CD = CFE = CQ, we have:

« /DPF =25,

|

e LEQD = %,
hence /FLE = 180° — ﬁ%

/FDB =90° — 2,

ZEDC = 90° — 7,
e hence ZEDF = 180° — ZFDB — ZEDC = 242,

So /ZFLE + ZEDF = 180°, meaning that FFLED is cyclic, showing the claim. O]

Now let G be the centre of the spiral similarity taking FE to PQ. It is well-known that
G = (LFE)N (LPQ) =wn (LPQ).

Claim. The points G, P,C, E are concyclic.
Proof. Using the similarity of triangles GF'E and GP(Q, we have /CPG+ /GEC = ZEFG +
(LFEC+/ZGEF) = ZFEC+(180° - ZFGE) = (180° — ZAEF) + ZEDF = 90° + § + 5? =

180°. [l

Similarly, G, B, F, @ are concyclic, implying that (PCE) and (BQF') meet at G, on w.

15
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A subset S of the integers is called Saxonian if for every three pairwise different elements a,
b, ¢ € S the number ab + ¢ is the square of an integer. Prove that any Saxonian set is finite.

Determine the largest possible number of elements that a Saxonian set can have.

Answer. Every Saxonian set has at most 3 elements, and there exist Saxonian sets consisting

of exactly 3 elements.

Solution. The set {0,1,4} is an example of a Saxonian set with 3 elements, as is shown by
an easy calculation.

Thus, it remains to prove the following claim.

Claim: A Saxonian set can not have 4 or more elements.

Proof: Suppose, to the contrary, that there is such set S, and let a < b < ¢ < d be some of its

elements. We distinguish between two cases.

First case. ¢ > 0.

Then one also has d > 0. If a < 0 then ad+ ¢ < (—d) + ¢ < 0 can not be a perfect square.
Therefore, it follows that, in fact, d > ¢ >b>a > 0.

Since S is Saxonian, c¢d + a = k? and cd + b = [?, for some nonnegative integers k and .
Moreover, b > a implies that [ > k41, and by plugging in this inequality again, one finds

cd+b=0P>k+1>2=k+2k+1=cd+a+2k+1.

This yields
b—a—1
< —

- 2

k

On the other hand, d > ¢ > 0 and a > 0 together imply
K =cd+a>cd>c?,

which shows k > c.

But this leads to a contradiction, as inequality (1)) implies k£ < (b—a—1)/2 <b/2 < b < c.

16
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Second case. ¢ < 0.

Then one also has a < 0. If d > 0 then ad+ ¢ < (—d) + ¢ < 0 can not be a perfect square.
Therefore, it follows that a < b < c < d < 0.

Let us write a =: —A, b=: —B,c=: —C,and d=: —D. Then 0 < D < C < B < A.

Since S is Saxonian, ab+ ¢ = AB — C = k?> and ab+ d = AB — D = [?, for some
nonnegative integers k and [. Moreover, D < C' implies that [ > k + 1, and by plugging

in this inequality again, one finds
AB—-D=0P>((k+1?=k+2k+1=AB—-C+2k+1.

This yields
—-D—-1
k< ¢-Db-1 5 . (2)

On the other hand, B > C' > 0 and A > B together imply
k*=AB—-C>AB—-B=(A-1)B > B?,

which shows k& > B.
But this is impossible, as inequality implies k < (C—-D—-1)/2<(C/2<C < B.

Thus, both cases above turned out to be contradictory. Therefore, a Saxonian set of at least

four elements does indeed not exist.

Remark: There are many Saxonian sets of three elements. A computer experiment delivers
already 107 Saxonian sets {a,b,c} of integers —100 < a < b < ¢ < 100. Among them, there
are very obvious ones such as those of type {0,142, 72}, for positive integers i # j, but as well
many others, such as {—98, —59, —6}.

17
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T-1

Bob has n coins with integer values
Cp>2cp 2> >0, >0.

He is standing in front of a vending machine that offers n candy bars with positive integer costs
b1, ba, ..., b,. Bob notices that for every i € {1,...,n}, it holds that

b1+b2+"'+bi201+02+"'+CZ’.

Furthermore, the total value of Bob’s coins equals the sum of the costs of all the candy bars.
The candy bars can be purchased in any order. In order to buy the i-th candy bar, Bob has
to insert coins of total value at least b;. However, the machine does not give him back any

change.

Prove that Bob can buy at least half of the candy bars.

Solution 1. Let m =[] and let
S::b1+b2+"'+bn:Cl+02+"'+cn.

We call the coins with value ¢y, ..., ¢, the valuable coins. In the following, we will show that

Pepa can buy the bars that cost b,,11,...,b,.

Rewriting the condition from the problem statement for ¢ = m yields

bi+by+ - +bp>c1+cat -+,
<~ S_bm+1_bm+2_"'_bnZS_Cm+1_Cm+2+"'+Cn7
— Cmt1+ Cng2 -+ o 2 by + bpga + -+ bn. (1)
We can represent the situation visually by splitting an interval of length S into n segments
By, ..., B, of length by,...,b, in that order, and another interval of length S into n segments

Ci,...,C, of length cy,...,c, in that order. We view these two intervals side by side.

We would like to pay for the bar represented by B; (where i > m) using the coins represented
by those segments that overlap the interval B;. That would clearly be enough to pay for the
bar, but some coins might be used multiple times to pay for different bars. Luckily, because of
(1), we have not used any valuable coins at all. We just need to show that we can use these

valuable coins in place of the coins that were used multiple times.

When did we use the coin represented by C; to pay for both the bars represented by B; and
B, 417 If and only if the boundary between B; and B;;; lies inside the interval C;. Hence, the

18
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C1 C1 I ij: j

bl bl bl
Co CQ / \ C2

by by \\ by
Cc3 C3 ‘\\ C3

bs “ bs “ ,// b3 o

by by by
Cs Cs > Cs

b5 b5 b5

number of times we use the coin represented by C; equals one plus the number of boundaries
inside of C;. We are only buying n —m bars and thus the number of boundaries between them
is at most n — m — 1 < m. (Some boundaries between the B;’s might align perfectly with
boundaries between the C;’s. In that case, the number of repeated uses of some coin will be

even smaller than n —m — 1.)

This means that we have enough valuable coins to cover for the coins used multiple times.
Each of these valuable coins is at least as valuable as any of the “original” coins that were used

multiple times, so we successfully pay for the chosen candy bars. O]

b,. Indeed, if this

Solution 2. We may assume without loss of generality that b; > --- >
were not the case and 7 would be the permutation such that brq) > -+ > by(n), then for every

i€{l,...,n}, we would have
bry + -t ey 21+ +bi>Za+-+a
Thus, the problem requirement is also fulfilled for by (1), ..., bx(n) instead of by, ..., by,.

Claim. The following holds:
(a) cn > by,

(b) cnoki1 + Cnok = bn_y, for each k € {1,... [n/2] — 1}.

19
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Once we prove the claim, we are done because it explicitly shows how Pepe can buy the candy

bars which cost b, /2)41, - -, bn.
Proof of the claim. First, we derive the inequality
ot e+t 2 b+ ey + -+ by (*)

for any ¢ € {1,...,n} in essentially the same way as in the first solution, where we did this

only for £ = m + 1. Taking (x) for £ = n immediately justifies (a).

Now, because the sequences by,...,b, and c¢q,...,c, both are weakly decreasing, for any k €
{1,...,[n/2] — 1}, we have

o 2 2

Cn—2k + Cno2ky1 = M1 (Cn—ok + Cpohr + -+ Cp) > 1 (bp—ok + bp—spsr + -+ by)
(i) ——— (bn—ok + bp—py1 + -+ + bpp) (i) 2. (k+1)-byg-
— 2k+1 —2k+1

These inequalities are justified as follows: (1) holds because the average of ¢, ok, Cp_ok+1 1S

clearly at least as large as the average of ¢, o, ..., ¢, (2) is merely throwing away some non-
negative terms, and (3) is bounding the smallest element of b, o, ...,b,_x by the average.
Overall, we obtain
2k +2
— — > cbp_p > bp_p. O
Cp—2k T C 2kl Z 50 k k

20
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T-2

Let RT be the set of positive real numbers. Determine all functions f: RT — R* such that for

all numbers z,y € RT, we have

flay) + f(a) = fw)f(xf) + fl@)f(y),

and there exists at most one number a € R™ such that f(a) = 1.

Answer. The function f(z) = 1/x is the only function solving the functional equation.

Proof that this is a solution. For the function f(x) = 1/z, we indeed have

Flay) + 1) = 2o+ 1 = 2o 2= F) )+ f@)])

xy T

for all z,y € R*. The equality f(a) =1 is only attained for f(a) =1 =1a=1.

Proof that there are no other solutions. The solution consists of two parts. In the first
(more complicated) part, we show that f(1) = 1 follows from the functional equation, so 1 is
actually in the image of f. In the second part, we show then that f(x) = % is the only function
satisfying the functional equation where 1 is the unique preimage of 1 (i.e. where f(1) =1 but
f(a) # 1 for all @ # 1). For simplicity of notation, let in both parts P(z,y) denote the equality
from the problem and denote f(f(x)) by ff(x).

First part. We want to describe as much dependencies as possible in terms of 1 and f(1)
to finally show f(1) = 1. The key insights to this part are not being afraid of complicated

constants and looking at a simplified version of P(z,yf(1)) later.

Plugging in easy examples for x and y gives us

PUL) —  f)=2- (1) )
P(r,1) ) =255 o) = L po 2)
Pl ) @8 g - 222 )
8. — ()L )

This allows us to simplify ff(1) and f(cz) for some constants c. Note that f(z) > 0, so all

denominators are positive.

21
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Now,
P(e,yf(1) )+ ) = £ (e 00) + s
@.@ FFW) e = 2-2f(1) + f(1)? - fF)
fz) + ) (zy) ) fW)f(@f(y)) + 0 (@).f(y),

(5)
using and to pull out the constant factors.

The identity is similar to P(z,y) with different coefficients, so we may subtract a multiple
of P(z,y) to anihilate the term f(y)f(zf(y)) and get

2-2f(1) + f(1)? _
(1— O )f(x)+c-f(xy)—c-f($)f(y)

@ —2(1— f(1))?
F(E2 - f(1))

where ¢ is a constant we do not need to calculate.

f@) = —c- flzy) +c- f(x)f(y), (6)

As the right side of @ does not change when we exchange x and y and the left side is constant
in y, we can conclude that the left side of () must also be also constant in z. So f(1) = 1 and
we are done with the first part, or we get that f is constant. But as 2 = f(1) + ff(1) by (I)),
this also implies f(1) = 1.

Second part. We now know that f(1) =1 and use it without further notice.

First, we note that the right side of the functional equation only depends on x and f(y), but
not on y, so for f(y1) = f(y2), we get

f(@) + floy) = f(z) + f(2ye).

By choosing # = -1, this implies that f(z—f) = f(1) = 1. By the assumption that there is at

Y1’
most one a with f(a) = 1, this implies y; = s, so f is injective.

Now,

P(ly) = L=fy)ffy) (7)
P(1, f(y) = L= fffffy)

so f(y) = #() = fff(y). By injectivity, we can conclude y = ff(y). So, implies that

fly) = #(y) = i for all y. In other words, the function f must be given by f(z) = 1/ for all

x € RT.
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Second part, alternative. We have f(1) = 1 and use it without further notice. Moreover, we

have
P(l,y) = 1= f(y)ffy)
P(f(x), f(x)) 2 F(F@)?) = (FF(@))?
P(f(x),x) &2 ff(@) =1

7)
(8
(9

As 1 is the only preimage of the value 1 for the function f, from (9) we can deduce zf(z) = 1.

So we have f(z) = % for all x € RT.

Tz
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T-3
A snake in an n x n grid is a path composed of straight line

segments between centres of adjacent cells, going through the

centres of all the n? grid cells, which visits each cell exactly T i)
once. Here two grid cells are considered to be adjacent if they T——‘
share an edge. Note that all pieces of the snake path are [ L_T
parallel to grid lines. The figure shows an example of a snake 1

in a 4 x 4 grid. This snake makes nine 90° turns, marked by
small black squares.
Let us now consider a snake through the 2025 cells of a 45 x 45 grid. What is the maximum

possible number of 90° turns that such a snake can make?

Answer. The maximum number of 90° turns is 1979.

Optimal Construction. The maximum number 1979 if turns can be achieved by the “double
snail”. The following figure shows these for a 7 x 7 grid.

——— 1 |

oo

[ || o

Such a double snail goes around the board in L-shaped layers of width 2, as is depicted in the
figure. There are two cells in each layer it passes straight through. The only other non-corners

are the starting and ending point, which gives 452 — 44 — 2 = 1979 turns.

Proof of that at most 1979 turns are possible. Color the table as shown in the figure above:
color like in chess, but instead of black, color alternately by red and blue, with red in the corners
of the table. This gives 232 red and 222 blue cells, so there are 45 more red cells than blue cells.
If the snake turns in a white cell, the cells immediately before and after are of different colors
(one is red and one is blue). Thus, when considering the sequence of colored (red or blue) cells
along the snake, between any two consecutive red cells in this sequence, the snake must pass
through a white cell without turning there. The sequence of colored cells consists of 232 red
cells and 222 blue cells, so in this sequence there must be at least 232 — 222 — 1 =2.22 = 44
pairs of consecutive red cells. Therefore, there must be at least 44 white cells on which the

snake is not turning. Together with the two endpoints of the snake (which must be on colored
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cells since the snake is alternating between colored cells and white cells, and there are more
colored than white cells), we find at least 46 cells where the snake does not make a 90° turn.

Thus, we can have at most 452 — 46 = 1979 turns, as claimed.

Alternative proof that at most 1979 turns are possible. Consider a snake in a 45 x 45 grid.
We call a cell straight if the snake does not have a 90° turn in that cell. In particular, the first and
the last cell of the snake are straight. We will show that the snake has at least 46 straight cells.
This implies that the number of 90° turn of the snake is at most 452 — 46 = 2025 — 46 = 1979.

Claim 1. Each row and each column of the grid contains at least one straight cell.

Proof. Indeed, consider any row R, and suppose that R does not contain a straight cell. In
particular, the start and end of the snake cannot be in R. When traversing the snake from
start to end, the snake will enter R vertically from the top or bottom, turn to take a horizontal
step along R to a neighboring cell, and then turn away vertically again. Later, the snake will
enter R again, take another horizontal step along R to a neighboring cell, and then leave R
again; and so on. In particular, there would need to be equally many cells in R, where the
snake enters R and where the snake exits R. However, this is impossible, since R contains 45

cells, which is an odd number.

For columns, the proof is similar. O

This already shows the existence of at least 45 straight cells.

Now, let us assume without loss of generality that the first step of the snake (from the starting
point to its second cell) is horizontal (otherwise we can consider a reflection of the snake along

the main diagonal of the grid). Let the first two cells of the snake be in row R.
Claim 2. R contains another straight cell besides the first cell of the snake.

Once we have proved the claim, we are done since R contains at least 2 straight cells, and each
of the other 44 rows contains at least one straight cell (making a total of at least 46 straight
cells).

Proof of Claim 2. Suppose that R does not contain another straight cell besides the start of
the snake. In particular, the end of the snake cannot be in R. When traversing the snake from
start to end, the snake will start in R, take a horizontal step along R to a neighboring cell, and
then turn away vertically. Afterwards, the snake would enter vertically, take a horizontal step
along R to a neighboring cell, and then exit R again there. In particular, there would need to
be equally many cells in R, where the snake starts or enters R and where the snake exits R.

However, this is impossible, since R contains 45 cells, which is an odd number. O
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Comments. The problem (and the solutions) can be generalized in a straightforward way for

any odd n in place of 45, the maximum possible number of turns is then n? —n — 1.

For even n, the “double snail” construction gives the value n? — n, but we do not have a proof

of its optimality.
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T-4

Let n be a positive integer. In the province of Laplandia there are 100n cities, each two
connected by a direct road, and each of these roads has a toll station collecting a positive
amount of toll revenue. For each road, the revenue of its toll station is split equally between
the two cities at the ends of the road (meaning that each of the two cities receives half of the
income). For each city, the total toll revenue is given by the sum of the revenues it receives

from the 100n — 1 toll stations on its roads.

According to a new law, the revenues of some of the toll stations will be collected by the federal
government instead of by the adjacent cities. The governor of Laplandia is allowed to choose
those toll stations. The mayors of the cities demand that for each city, the sum of the remaining
revenues it receives from the other toll stations after this change is at least 99% of its former

total toll revenue.

Find the largest positive integer k, depending on n, such that the governor can always choose k
toll stations for the federal government to collect the toll revenue, while satisfying the demand

of the city mayors.

Answer. k= 100(3).

We consider a complete graph whose vertex set is the set of the 100n cities in Laplandia. We
assign weights to the edges, where for every edge the weight is the revenue from the toll station
of the corresponding road that each of the two cities at its endpoints receives (i.e. half of the
total revenue of the road). The question now asks how many edges can be removed such that

at each vertex the sum of the weights of the incident edges decreases by at most 1%.

Proof of £ < 100 (g) . Let us consider an assignment of edge weights, where the weights on all
of the edges are equal (meaning that each road collects the same amount of toll revenue). In
this case, one cannot remove more than 1% of the 100n — 1 edges incident to any vertex. Thus,
at every vertex at most |5(100n —1)] = n — 1 edges can be removed. So by the handshake

lemma, the total number of edges that can be removed is at most (n — 1)(100n) = 100(3).

Proof of k£ > 100(2). Now consider any assignment of positive edge weights. We need to
show that we can remove 100 (g) edges in such a way that at every vertex the sum of the edge

weights is decreased by at most 1%.

Partition the vertices of the graph into 100 (not necessarily equally sized) parts to minimize
the sum of the weights of all edges whose endpoints lie in the same part of the partition. By
the minimality of this choice, we have the following: For any vertex v in part P and any other
part P, the sum of the weights of the edges going from v to P’ is at least as large as the sum

of the weights of the edges going from v to the other vertices in P (otherwise we could move
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v from P to P’ and improve our partition). Therefore, for each vertex v, the edges from v
to the other vertices in P contribute at most a fraction of ﬁ = 1% of the total sum of the
weights at vertex v. Thus, we can remove all edges whose end vertices belong to the same part
in the partition, and this will decrease the sum of the weights at every vertex by at most 1%.

It remains to show that when doing this, we remove at least (;L) edges.

Letting a, as, . .., aj0o be the sizes of the parts of the vertex partition (where aj + - -+ + a9 =

100n), the number of removed edges is

100
ay as @100 1 1
<2>+(2)+-~+< 0 ) =250 —a) = S(af + a5+ + ajg) — 50n

i=1

> 50n2 — 50n = 100 (Z)

where the inequality follows from the inequality between arithmetic and quadratic mean.
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T-5

Let ABC be an acute triangle with AB < AC. Denote by D the foot of the perpendicular from
A to BC. Let E be the point such that ABEC is a parallelogram. Let M be a point inside
triangle ABC such that M B = MC. Let F be the reflection of point D across the tangent to
the circumcircle of triangle ADM at point M. Prove that AF = DE.

Solution 1. Let D’ be the projection of E on BC. The parallelogram ABEC' is point sym-
metric with respect to the center of the line segment BC. Therefore, D and D’ are also

symmetric with respect to this center and we obtain DE = AD’. Hence we only need to prove
AD' = AF.

Let T be the center of the line segment DF. By definition of the point F', the line T'M is the
tangent to the circumcircle of ADM at M and M D = MF. In addition we have M D = M D’
since the point M is on the perpendicular bisector of BC' and D and D’ are symmetric with

respect to this bisector. It follows that M is the circumcenter of triangle DFD’.

From the tangent chord angle theorem with chord DM in the circumcircle of ADM we obtain
ADAM = £LDMT. Furthermore, we have LDMT = LTMF and {DMF = 24LDMT =
24 DAM. In the circumcircle of DF D’ with center M we obtain

ADD'F = ;KDMF = 4ADAM

We denote by I the intersection point of AM and D'F. From L DAI = ADAM = £DD'F =
£DD'I it follows that A, D, I, D" are concyclic.

In the cyclic quadrilateral ADID’" with chord AD’ we obtain 90° = LD'DA = LD'IA, ie
AM 1L D'F. Since MF = M D' it follows that AM is the perpendicular bisector of F'D' and
we have AF = AD’, as required.
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Solution 2. As shown in the first solution we only have to prove, that AF' = AD’, where D’

is the reflection of D with respect to the perpendicular bisector of the line segment BC'.

In the triangle ADM we denote the projection of the point M onto the line AD by S and
ADAM = o and LM DA = 6. In the rectangular triangles ASM and MSD the following

relations hold:

AM? = AS* + SM* | AS = AMcos(a) , SM = AM sin(a)
DM? = DS*+SM?* |, DS=DMcos(§) , SM=DMsin(5) . (1)

Let T be the center of the line segment DF'. By definition of the point F' we have M D = M F
and LDMT = £TMF and the line TM is the tangent to the circumcircle of ADM at M.
From the tangent chord angle theorem with chord DM in the circumcircle of ADM we obtain
a=ADMT. It follows

LAMF = LAMD + £DMT + {TMF
= (180° — 6 — a) + 2a
—180°— b4 a . (2)
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Using the law of cosine in the triangle AFM we obtain

AF? = AM? + MF? —2AM - MF - cos({AMF)
= AM?* + MD? +2AM - M D - cos(—d + a)
= (AS? + SM?) + (SD?* + SM?) +2AM - M D (cos(a) cos(8) + sin(a) sin(4))
= AS? + SD* +2AS - SD +4SM?* = AD* + 4SM* . (3)

Since the point M is on the perpendicular bisector of the line segment D'D and M .S is parallel
to DD' we have DD’ = 2M S. Finally we get AF? = AD? + (2SM)? = AD? + D'D* = AD"”,

as required.

Solution 3. Let Z be the midpoint of BC. By definition of F, the point reflection in Z maps
E to A; let it map D to D’. By the choice of M, M Z is the perpendicular bisector of BC', so the
reflection across M Z also maps D to D’. Consider the concatenation with the reflection across
AM which maps D’ to some point D”. This concatenation is a rotation about the common
point M of both axes by 24(MZ, AM) = 2/DAM = ZDMF, since DA || MZ and ZDMF
is by construction twice the tangent angle of DM at M. So D is mapped to F, ie. ' = D",
and we get |AF| = |AD"| = |AD'| = |ED|.
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T-6

Let ABC be an acute triangle with an interior point D such that Z/BDC = 180°— ZBAC'". The
lines BD and AC intersect at the point £, and the lines C'D and AB intersect at the point F'.
The points P # E and @ # F lie on the line EF so that BP = BE and CQ = CF. Assume
that the segments AP and A(Q) intersect the circumcircle w of ABC' at the points R # A and
S # A, respectively. Prove that the lines RF and SFE intersect on w.

Solution 1. First of all, points A, F, D, E are concyclic due to ZEDF = Z/BDC = 180° —
/ZBAC.

Denote by T the intersection point of segments AD and EF. We will prove that ATBP is

a cyclic quadrilateral, by angle chasing:
/BAT = /FAD = /FED = /PEB = /BPFE = /BPT.

Analogously, ATC() is a cyclic quadrilateral.

Consider triangle AP(@) and points R, S, T on its sides. Miquel’s theorem gives that there is
a common point M of the circumcircles of ARS, PTR, and QST.

[ —
’4’372&

! NV
S

Let us look at the cyclic quadruples (P, R, T, M), (A,T, B, P), and (A, R, B, M). Due to the
radical axis theorem, the lines PT, AB, and RM are concurrent, which proves that the points
R, F, M are collinear.

Analogously, the cyclic quadruples (Q, S, T, M), (A, T,C,Q), and (A, S,C, M) give that points
S, E, M are collinear, which finishes the proof.
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Solution 2. Let X be the intersection of BP and CQ.

Claim 1. X is on w.
Because the triangles PBE and FC(Q are isosceles we have K BPE = L PEB and LCF(Q =
LFQC. Tt follows in the triangles PX(Q and FDFE

L£QXP =180°— ABPE — L{FQC = 180° — LPEB — LCFQ = {EDF = 180° — LBAC.

If X and A lie on opposite sides of line BC', then the claim 1 follows directly. If X and A lie on
the same side of line BC then it follows that L BXC = 180° — LQXP = £BAC and finally

claim 1.
Let Y be the intersection of BS and CR.

Claim 2. The point Y is on the line PQ) = E'F.
By Pascal’s theorem applied to BSARCX the points BSNCR =Y , SANCX = @ and

ARN X B = P are on one line, which proves claim 2.
Let Z # S be the second intersection of SE with w.

Claim 3. Z is on the line RF.

By Pascal’s theorem applied to BSZRCA the points BSNRC =Y, SZNCA = E and
Z RN AB are on one line. Because of claim 2 Y is on E'F and therefore the point ZR N AB is
alsoon EF,ie. F=ZRNAB and R, F' and Z are on one line.

It follows that Z is the intersection of RF' and SE which is also on w.
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Sketch of a solution using spiral similarity Let X = BPNC(Q. As in the second solution, we
have X € w. Now let G # X be the second intersection of circles (X BC) = w and (X PQ).

Claim. We have AGFE ~ AGRS.
Proof. By the spiral similarity lemma, AGBC ~ AGPQ. So

/GPE = /GPQ = LGBC = LGAC = LGAFE,
implying that GEAP is a cyclic quadrilateral. This yields

/FEG = /PEG = /PAG = ZRAG = ZRSG.

Similarly, GF AQ is cyclic and we obtain /GFE = ZGRS. Therefore, AGFE ~ AGRS. [

From the claim, the spiral similarity lemma yields that RF' N SE lies on (GRS) = w.

Remark. Point G satisfies (A, G; B,C) = —1 and is in particular fixed when D moves.
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T-7

Let n be a positive integer such that the sum of positive divisors of n? +n -+ 1 is divisible by 3.
Prove that it is possible to partition the set of positive divisors of n? +n + 1 into three sets

such that the product of all elements in each set is the same.

Solution. We first prove the following lemma.
Lemma. Let p be prime divisor of n> +n+1. Thenp=3 or p=1 (mod 3).

Proof. We have n? +n + 1 = 0 (mod p). Multiplying by n — 1, we get n®> = 1 (mod p).
Thus, the order of n modulo p is either 1 or 3. If the order is 1 then n = 1 (mod p), hence
0=n?+n+1=3 (mod p), and p = 3. Otherwise, the order of n modulo p, which must divide
p — 1 according to Fermat, is 3. Therefore, p =1 (mod 3). [

We now come back to the original problem.

Let m :=n? 4+ n + 1 and consider the prime decomposition m = p{* - ... - pp* of m. Then the

sum of the divisors of m is
o(m)=oc@)-...-oy*) = Q4+p+pi+-+p) .- A+pe+pi+-+p0).

The assumption implies that at least one of the factors on the right hand side is divisible by 3.

If p; = 3 then (1 +p; + p? + -+ + p$) is not divisible by 3. Hence, there must be some prime
factor p; = 1 (mod 3) such that 3 | (14 p; +p? +--- + p}’), which shows a; = 2 (mod 3).
The number of divisors of m is d(m) = d(p{*) - ... - d(pp*) = (ax + 1) - ... (ag + 1). Since

a; =2 (mod 3), one may conclude that the number of divisors of m is divisible by 3, too.

Moreover, one observes that m is not a perfect square. Indeed, n> <m =n?+n+1< (n+ 1)

m

d
divisor d of m with the complementary divisor . The product of the elements of any of these

Let d be any divisor of m. Then 7 is also a divisor of n, and d # 7. Thus, one may pair every

pairs is then equal to m

Since the number of divisors is divisible by 3, the same is true for the number of pairs. One can
therefore split the set of these pairs into three subsets such that each subset consists of the
same number of pairs. This leads to three groups of divisors, and the product of all elements

of each group must be the same.

Remarks: 1. There are other, less elegant ways to describe a partition of the divisors of
n? 4+ n + 1 into three groups such that each group has the same product. Let us indicate at

least one of them.
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Write m = p;’ - N, for N := m/p;’, and suppose that o;; = 2 (mod 3). Then every divisor
of m may uniquely be written in the form p§ - n, for 0 < a < a; and n | N. Let us distinguish

between two cases.
a; =5 (mod 6).
Then write a;; = 6/ — 1, for a positive integer [, and put
G1::{p?-n|0§a§l—10r5l§a§61—1},

Gg::{p?-n|l§a§2l—1or4l§a§5l—1}, and
Gy={pj n|20<a<4l—1}.

a; =2 (mod 6).

Then N is a non-square. Put, at first,
Gi:={pj-nla=1(mod3)}.

The remaining divisors of m come in blocks of four, and are distributed among G5 and G3

according to the following rule. If p% - n is put into Go then put pjo-lj “*.(N/n) into Gb,

as well, but put p;”~ - n and p? - (N/n) into Gs.

2. The smallest positive integer n such that the sum of the positive divisors of n? +n 4 1 is
divisible by 3 is n = 22. Then

n24+n+1=507=3-132

and o(507) = (14 3) - (1 + 13+ 13%) =0 (mod 3).
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T-8

Determine whether the following statement is true for every polynomial P of degree at least 2

with nonnegative integer coefficients:

There exists a positive integer m such that for infinitely many positive integers n the num-

ber P"(m) has more than n distinct positive divisors.

Remark. Here P" denotes P applied n times, this means P"(z) = P(P(...P(z)...)).

Answer. Yes, there is always a positive integer m such that P"(m) has more than n distinct

positive divisors for infinitely many positive integers n.

Solution. We will show that

2, for P(0)=0
m =
P(0), for P(0)>0

Y

?

works.
Let 7(r) denote the number of distinct positive divisors of the positive integer 7.
Case 1: P(0) =0.

Since the polynomial P has degree at least two and non-negative coefficients, one has

P(¢) > (* > 2, for every £ > 2. In particular, one may conclude inductively that
PF(2) > PF1(2) > 2

holds, for every integer k > 2.

Furthermore, P(0) = 0 implies = | P(z), whence each divisor of P¥~1(2) is a divisor of
P*¥(2), too. Together with the fact that P*¥(2) > P¥1(2) has at least one further divisor
(itself), one knows that 7(P¥(2)) > 7(P¥71(2)) + 1, for every integer & > 2. From this,

by induction, one gets
T(P*2) > 7(P2)+k—1>24+k—1>k,

as asserted.
Case 2: P(0) > 0.

The following lemma is essential.
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Lemma. Let A and B be integers such that A | B and B > A?. Then

7(B) > 27(A).
Proof. One has B > A% > 1, so that B has at least one prime factor. Thus, one can write
B = plil pSQ : pfi, for distinct primes p; and positive integers b;. Moreover, since A | B,

one has A = p{'py®...p;", for non-negative integers a; such that a; <b;.

The assumption B > A? implies the existence of an index k such that b, > 2a;. Since
7(B) = [[(b; +1) and 7(A) = [](a; + 1),
j=1 j=1

it turns out that indeed

7(B) ﬁbj+1 bl Qut)+1
J:1Gj+1_ak+1_ ak+1 N

Corollary. Let Q(x) be a polynomial with non-negative coefficients and degree at least 2,
such that Q(0) > 0. Then

(Q(Q(0)) = 27(Q(0)).
Proof. Since @ has integer coefficients, (a —b) | (Q(a) — Q(b)), for any integers a and b.
In particular, (Q(O) — 0) | (Q(Q(O)) - Q(O)), so Q(0) | (Q(Q( )) Q0 )) and

Q(0) | Q(Q(0)) .

If we write Q(z) = aqz? + ... a1z + ag then ap = Q(0) > 0, so
Q(iE) > CLdZEd +ag > ada:d > 74 > sz’

for any non-negative integer x. In particular, Q(Q(O)) >Q(0)2>1

Thus, the lemma applies with A := Q(0) and B := Q(Q(0)), and shows that indeed
m(Q(Q(0)) = 27(Q(0)). m

Returning to the original problem, let us put m = P(0). We will show by induction
on k that, for all n := 2% — 1, the value P"(m) = P?"(0) has at least n + 1 = 2 positive

divisors.

For £ = 1, the corollary implies that P(P(O)) has at least 2 positive divisors, which is
exactly what is stated.

Finally, when the statement is to be shown for some fixed k£ > 2, one may suppose that

it is already known for £ — 1. Then, using the induction hypothesis and the corollary for
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Q := P?", one gets

T(P* 7 (m)) = (P (0) = (P (P (0))) = 27(P* ' (0)) 2 2- 25t = 2%

This completes the solution.
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